Tokuda Laboratory

Renewal of NIH R01 Project on Sensorized Needle

Posted on 02/22/2024

Our collaborative team, consisting of the Tokuda Lab, the Surgical navigation and Robotics Lab at Brigham and Women’s Hospital (PI: Nobuhiko Hata, Ph.D.) and the Advanced Medical Instrumentation and Robotics (AMIRo) Research Lab. at Johns Hopkins University (PI: Iulian Iordachita, Ph.D.), has been awarded a 4-year, $2.47M R01 grant from the National Cancer Institute (NCI) for their medical robotics research project titled “Adaptive Percutaneous Prostate Interventions using Sensorized Needle.” This is a renewal of a 3-year $1.70M R01 grant previously awarded to the same team in 2019. Drs. Tokuda, Hata, and Iordachita will lead the project as PIs.

The project aims to develop a robotic system for minimally invasive prostate interventions, such as biopsy and focal treatment of prostate cancer. This system will utilize a novel shape-sensing needle and needle-guiding manipulator to accurately insert a needle into lesions identified by magnetic resonance imaging (MRI). The goal is to improve the accuracy of cancer diagnosis and the outcomes of focal treatment.

This project builds on a decade-long partnership between NCIGT, JHU, and Worcester Polytechnic Institute (WPI), established by Clare Tempany, M.D., Director of NCIGT. This partnership leverages NCIGT’s clinical and engineering expertise in image-guided therapy and JHU and WPI’s expertise in robotics and sensing to advance the field of image-guided medical robotics. Since 2006, this partnership has secured seven new and renewal R01 grants with a total budget of more than $22.5M collectively from NCI and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) leading to several successful clinical trials.

  1. Bernardes MC, Moreira P, Mareschal L, Tempany C, Tuncali K, Hata N, Tokuda J. Data-driven adaptive needle insertion assist for transperineal prostate interventions. Phys Med Biol. 2023;68(10). doi:10.1088/1361-6560/accefa PMID: 37080237. PMCID: PMC10249778.
  2. Moreira P, Patel N, Wartenberg M, Li G, Tuncali K, Heffter T, Burdette EC, Iordachita I, Fischer GS, Hata N, Tempany CM, Tokuda J. Evaluation of robot-assisted MRI-guided prostate biopsy: needle path analysis during clinical trials. Phys Med Biol. 2018;63(20):20NT02. doi:10.1088/1361-6560/aae214 PMID: 30226214. PMCID: PMC6198326.
  1. Patel NA, Li G, Shang W, Wartenberg M, Heffter T, Burdette EC, Iordachita I, Tokuda J, Hata N, Tempany CM, Fischer GS. System Integration and Preliminary Clinical Evaluation of a Robotic System for MRI-Guided Transperineal Prostate Biopsy. J Med Robot Res. 2019;4(2):1950001. doi:10.1142/S2424905X19500016 PMID: 31485544. PMCID: PMC6726403.
  2. Wartenberg M, Schornak J, Gandomi K, Carvalho P, Nycz C, Patel N, Iordachita I, Tempany C, Hata N, Tokuda J, Fischer GS. Closed-Loop Active Compensation for Needle Deflection and Target Shift During Cooperatively Controlled Robotic Needle Insertion. Ann Biomed Eng. 2018;46(10):1582–1594. doi:10.1007/s10439-018-2070-2 PMID: 29926303. PMCID: PMC6319385.
  3. Su H, Iordachita II, Tokuda J, Hata N, Liu X, Seifabadi R, Xu S, Wood B, Fischer GS. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review. IEEE Sens J. 2017;17(7):1952–1963. doi:10.1109/JSEN.2017.2654489 PMID: 28652857. PMCID: PMC5482288.
  4. Eslami S, Shang W, Li G, Patel N, Fischer GS, Tokuda J, Hata N, Tempany CM, Iordachita I. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int J Med Robot. 2016;12(2):199–213. doi:10.1002/rcs.1671 PMID: 26111458. PMCID: PMC4691445.
  5. Seifabadi R, Cho NBJ, Song S-E, Tokuda J, Hata N, Tempany CM, Fichtinger G, Iordachita I. Accuracy study of a robotic system for MRI-guided prostate needle placement. Int J Med Robot. 2013;9(3):305–316. doi:10.1002/rcs.1440 PMID: 22678990. PMCID: PMC3772968.
  6. Song S-E, Hata N, Iordachita I, Fichtinger G, Tempany C, Tokuda J. A workspace-orientated needle-guiding robot for 3T MRI-guided transperineal prostate intervention: evaluation of in-bore workspace and MRI compatibility. Int J Med Robot. 2013;9(1):67–74. doi:10.1002/rcs.1430 PMID: 22492680. PMCID: PMC3674858.
  7. Tokuda J, Song S-E, Fischer GS, Iordachita II, Seifabadi R, Cho NB, Tuncali K, Fichtinger G, Tempany CM, Hata N. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions. Int J Comput Assist Radiol Surg. 2012;7(6):949–957. doi:10.1007/s11548-012-0750-1 PMID: 22678723. PMCID: PMC3692285.
  8. Tokuda J, Tuncali K, Iordachita I, Song S-E, Fedorov A, Oguro S, Lasso A, Fennessy FM, Tempany CM, Hata N. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy. Phys Med Biol. 2012;57(18):5823–5840. doi:10.1088/0031-9155/57/18/5823 PMID: 22951350. PMCID: PMC3517895.
  9. Seifabadi R, Song S-E, Krieger A, Cho NB, Tokuda J, Fichtinger G, Iordachita I. Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study. Int J Comput Assist Radiol Surg. 2012;7(2):181–190. doi:10.1007/s11548-011-0598-9 PMID: 21698389. PMCID: PMC3356244.
  10. Fischer GS, Iordachita I, Csoma C, Tokuda J, Dimaio SP, Tempany CM, Hata N, Fichtinger G. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement. IEEE ASME Trans Mechatron. 2008;13(3):295–305. doi:10.1109/TMECH.2008.924044 PMID: 21057608. PMCID: PMC2974180.